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On uniformly accurate high-order Boussinesq di�erence
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SUMMARY

A new accurate �nite-di�erence (AFD) numerical method is developed speci�cally for solving high-
order Boussinesq (HOB) equations. The method solves the water-wave �ow with much higher accuracy
compared to the standard �nite-di�erence (SFD) method for the same computer resources. It is �rst
developed for linear water waves and then for the nonlinear problem. It is presented for a horizontal
bottom, but can be used for variable depth as well. The method can be developed for other equations
as long as they use Pad�e approximation, for example extensions of the parabolic equation for acoustic
wave problems. Finally, the results of the new method and the SFD method are compared with the
accurate solution for nonlinear progressive waves over a horizontal bottom that is found using the
stream function theory. The agreement of the AFD to the accurate solution is found to be excellent
compared to the SFD solution. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: Boussinesq methods; nonlinear waves; accurate numerical methods; coastal and o�shore
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1. INTRODUCTION

Accurate and e�cient prediction of the nonlinear evolution of fully dispersive water-waves
over a bathymetry poses a formidable challenge. In recent years, a large number of studies
were devoted to models that are related to high-order Boussinesq (HOB) theory enhancing
the original work by Boussinesq [1].
The irrotational �ow of an incompressible homogeneous inviscid �uid is generally a three-

dimensional problem. Boussinesq-type equations reduce the description to a two-dimensional
one by introducing a polynomial approximation to the vertical distribution of the �ow into
integral conservation laws, while accounting for non-hydrostatic e�ects due to the vertical
acceleration (see Reference [2]). A number of variants exist. These have computational com-
plexities proportional to the area of the free surface (and to the order of the model), which
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makes them very attractive. In general, HOB models have an algebraic dispersion relation,
which approximates the exact (transcendental) dispersion relation of the fully dispersive water-
waves theory.
The accuracy of these approximate dispersion relations, decreases with the increasing of the

relative water depth, kh (h—water depth, k—wavenumber). The accuracy of the models also
decreases with the increasing of the nonlinearity parameter H=h (H—wave height). Finally,
the models’ accuracy decreases with the increase of bottom depth variations (e.g. bottom slope
steepness). The errors decrease as the order of the models is increased.
There are several ways to arrive at HOB models. The various HOB theories, derived in

di�erent ways, typically share similar dispersion characteristics, for equivalent model order.
They di�er among themselves in their nonlinear characteristics.
The dispersion relations in HOB models express the wave’s frequency-squared, as even

rational functions of its wavenumber. Many versions of HOB theory yield expressions in the
form of Pad�e Approximants. These produce a good representation of the dispersion relation
!2 = gk tanh(kh), from kh=0, past the radius of convergence of its Taylor series (g—gravity).
The error in the approximation of the dispersion relation increases with kh. Although the

accuracy increases with the order of the method, the deep water limit, !2 = gk cannot be
attained by an even function of k. An exception to this is the Fourier–Boussinesq method [3],
which successfully approaches the dispersion relation from shallow water to deep water.
In general the derivations are based on assuming a polynomial velocity pro�le at each verti-

cal transect. The simplest model of this type is ‘Shallow Water Theory’, in which the velocity
has no variation along the vertical axis. Next come the classic Boussinesq equations (and the
Korteweg–deVries (KdV) Equation, which possesses soliton solutions) with a parabolic pro-
�le. Higher in this hierarchy are the various order HOB models (see Reference [4]).
HOB models can be derived in several ways: by using as variables the velocities at in-

termediate depths (see Reference [5]), by enhancement of the equations through operational
calculus (see Reference [6]), by local polynomial methods (see Reference [7]), by two layer
models (see Reference [8]), or using an auxiliary potential (see Reference [9]).
Several models introduce auxiliary variables, e.g. by dividing the �uid domain into sub-

layers, or by expanding the velocity pro�le into a sum of basis functions. The overall order
of the model is e�ectively the product of the order of each variable, times the number of
variables. Thus, a trade o� is in e�ect.
Extensions of HOB models incorporate wave–current interaction, wave–body interaction,

wave-breaking and dissipation. For reviews see References [4, 10].
All the above progress is related to the development of the analytical equations of

Boussinesq-type models. However, in order to solve these equations for realistic problems
we usually write the numerical approximation of these equations, apply them to a geometrical
grid and solve the resulting set of linear equations for a speci�c problem. This method of
solution (which is the most common) may reduce the accuracy of the already approximate
Boussinesq equations. One of the wide spread numerical methods is the �nite-di�erence (FD)
method. In this method the derivatives of a function (in our case the velocity potential or the
free surface elevation) at a certain grid point are approximated using the numerical values of
the function in the grid point and the neighbouring grid points to some range. The accuracy of
the solution increases with the order of the method (the number of neighbouring grid points
that interact with each other) and decreases with the grid size. The computational cost follows
opposite trends. The FD method has not been optimized for solving Boussinesq-type equations.
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Harari and Turkel [11] have developed high-order FD methods speci�cally for the Helmholtz
equation that proved to be much more e�ective than the standard method. The goal of the
present work is to merge the FD method with the Boussinesq concept in order to construct a
new accurate FD (AFD) method speci�cally for Boussinesq-type equations and other similar
di�erential equations. First, a new method will be constructed for the linear part and then the
FD method will be extended along the lines of Agnon et al. [6] and Madsen and Agnon [12]
in order to formulate a numerical method for nonlinear high-order Boussinesq-type equations.
The HOB analytical Dirichlet to Neumann (DtN) operator is presented in Section 2 with

in�nite order of accuracy using operational calculus. In Section 3 the di�erential operator (∇)
is represented as a fully accurate di�erence operator, which combined with the analytical DtN
operator yields an in�nitely accurate di�erence representation of HOB. The new di�erence
operator is then approximated using a Pad�e rational series to give a new AFD method. The
accuracy of the AFD and the standard FD (SFD) methods are compared to the known linear
analytical solution in Section 4. The AFD presents excellent behaviour and is found to be
superior compared to the standard FD method. An extension of the AFD model to nonlinear
waves is presented in Sections 5 and 6. The results of the two numerical methods are compared
in Section 7 to the accurate solution for nonlinear progressive waves over a horizontal bottom,
which is found using the stream function theory. Again, the results of the AFD are in better
agreement with those of the accurate solution proving the new AFD method to be an improved
alternative to the SFD method for nonlinear Boussinesq-type equations.

2. ELIMINATING THE VERTICAL COORDINATE

The equations governing the irrotational �ow of an incompressible inviscid �uid with a free
surface over a horizontal bottom are

∇2� + �zz = 0; −h¡z¡� (1)

�t +∇�∇�−�z = 0; z= � (2)

�t + 1
2(∇�)2 + 1

2(�z)
2 + g� = 0; z= � (3)

�z = 0; z=−h (4)

Here, � is the velocity potential, h is the water depth and � the surface elevation. The origin
is on the undisturbed water level and z is positive upward. The horizontal gradient operator
relates � to the horizontal velocity, u:

u=(u; v)=∇�; ∇=
(
@
@x
;
@
@y

)
(5)

For convenience we denote �z=W and use the hat ( )̂ and tilde ( )̃ signs to denote the
value on z=0 and on z= �, respectively. For completeness we give a short review of HOB
derivation.
One of the main ideas of Boussinesq-type theories is to reduce the three-dimensional

description to a two-dimensional one. The �rst step towards such a reduction is to introduce
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an expansion of the velocity potential as a power series in the vertical coordinate:

�(x; y; z; t)=
∞∑
n=0
(z + h)n�n(x; y; t) (6)

By substituting this expansion into (1) we �nd

�(x; y; z; t)=
∞∑
n=0
(−1)n

(
(z + h)2n

(2n)!
∇2n�0 +

(z + h)2n+1

(2n+ 1)!
∇2n�1

)
(7)

This is a series solution with two unknown functions �0 and �1: Note that the velocities at
the undisturbed surface are given by

û=∇�̂=∇�0; Ŵ =�1 (8)

Now by the use of (7) and (8) the horizontal bottom condition (4) can be expressed as

Lc{Ŵ}+ Ls · {∇�̂}=0 (9)

with

Lc=
∞∑
n=0
(−1)n h

2n

(2n)!
∇2n; Ls=

∞∑
n=0
(−1)n h2n+1

(2n+ 1)!
∇2n+1 (10)

where ∇ is the gradient operator when applied to a scalar, and the divergence when applied
to a vector. This equation de�nes a relation between Ŵ and �̂, which is of in�nite order
in h∇. The series are convergent if � has a Fourier transform, since they correspond to the
analytic functions sinh(kh) and cosh(kh) where ik is the Fourier symbol of ∇.
Following Rayleigh [13], we may use symbolic notation of Taylor series operators by

which (10) can be given in the compact form

Lc= cos(h∇); Ls= sin(h∇) (11)

so that (9) becomes

cos(h∇)Ŵ + sin(h∇)∇�̂=0 (12)

and (7) and its z derivative become

�(x; y; z; t) = cos(z∇)�̂ + sin(z∇)∇ Ŵ (13)

W (x; y; z; t) =− sin(z∇)∇�̂ + cos(z∇)Ŵ (14)

Using (12) we can easily construct a DtN relation

Ŵ =− tan(h∇)∇�̂ (15)

and de�ne the DtN operator as

G=− tan(h∇)∇ (16)

Operator (16) is of in�nite order yielding an accurate dispersion relation. Nevertheless,
for practical use this operator needs to be approximated by a �nite order representation. The
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Figure 1. The accuracy of the linear dispersion relation for analytical Boussinesq-type
equations of di�erent approximations.

simplest way of doing so is by truncating the Taylor series representing the operator. The
higher the order of derivatives kept in the Taylor expansions the higher is their accuracy.
However, there is a better way to approximate this operator.
Pad�e approximation uses a ratio of two power series. It has double the accuracy of the

Taylor approximation, while using the same order of derivatives. For example Taylor (2n)
represents the Taylor series up to O(∇2n) (including) and Pad�e(2n; 2n) represents the Pad�e
approximation up to O(∇4n). Note that the operator is even, therefore, for the Taylor approxi-
mation the lowest order term neglected is actually of O(∇2n+2) and for the Pad�e approximation
it is of O(∇4n+2) using the same order of derivatives. Figure 1 shows the ratio between sev-
eral approximations of the DtN operator (16) to its accurate form, which gives the analytical
linear dispersion relation. We can see that Pad�e approximations agree much better with the
analytical linear dispersion relation than the Taylor series.
After approximating the DtN operator we need to use a numerical method in order to practi-

cally solve the di�erential equation. A most common method for solving di�erential equations
is the FD method. The main concept of this method is to replace a local derivatives with an
approximation using the function values in nearby locations. The approximation used for that
purpose is the Taylor series. As stated before this approximation is less e�cient compared to
the Pad�e approximation. When solving Boussinesq-type equations numerically approximations
are made twice. First, using Pad�e approximation in order to develop the DtN relation to a
requested order and second, using Taylor series in order to construct the relation as a set of
algebraic equations. In the next section an in�nite order FD derivative operator is combined
with the DtN operator to be approximated together only once using Pad�e approximation. This
results in a much more e�cient method.
Madsen et al. [4] denote the HOB according the Pad�e approximation of: − tan(h∇)=h∇.

Although, we apply the Pad�e approximation to Equation (16), we keep the terminology of
Madsen et al. For example, when Pad�e(4; 4) is applied to Equation (16) the corresponding
terminology, Pad�e(2; 4), will be used.

3. CONSTRUCTING AN ACCURATE FD METHOD FOR THE LINEAR
DIRICHLET TO NEUMANN RELATION

For convenience of presentation we chose to develop the approximation for one-dimensional
distribution waves (∇= @=@x). The method is easily extended to two horizontal dimensions.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:925–945



930 Y. TOLEDO AND Y. AGNON

Using Taylor series we can de�ne:

f
(
d
2

)
− f(0) = d

2
∇f + d2

222!
∇2f + · · ·+ dn

2nn!
∇nf + · · · (17)

f(0)− f
(

−d
2

)
=
d
2

∇f − d2

222!
∇2f + · · ·+ (−1)n+1 d

n

2nn!
∇nf + · · · (18)

Here, d is the constant length between grid points and f is an arbitrary function. Summing
Equations (17) and (18) including all their terms and utilizing Rayleigh’s notation yields

f
(
d
2

)
− f

(
−d
2

)
=2 sinh

(
d
2

∇
)
f (19)

By de�ning a FD operator (�) Equation (19) transforms to

�f=2 sinh
(
d
2

∇
)
f (20)

Equation (20) de�nes the FD operator � as an in�nite power series of the di�erential operator
∇. This is equivalent to the Fourier representation of � that is usually used in stability analyses.
Solving this equation for ∇ allows us to represent it as a fully accurate FD operator

∇= 2
d
arcsinh

(
�
2

)
(21)

By substituting (21) into (16) we get a fully accurate FD de�nition of the DtN operator

G=− 2
d
tan

(
2h
d
arcsinh

(
�
2

))
arcsinh

(
�
2

)
(22)

Now all that is left to do in order to form a numerical stencil is to use an approximation to
truncate the in�nite FD operator G. Here, Pad�e(2; 4) is used as an example, but any other
order of approximation is applicable (see Appendix A for Pad�e(4; 6)),

��Ap= ��Bp = (−15(252d6 + 1344d2h4)h�2 − 15(31d6 + 112d2h4 − 128h6)h�4)=

((3780d8 + 20160d4h4 + (780d8 − 1260d6h2 + 3360d4h4 − 8640d2h6)�2

+ (23d8 − 155d6h2 − 28d4h4 − 720d2h6 + 192h8)�4) (23)

We can now de�ne the DtN relation (9) using (23) to get

��BpŴ = ��Ap�̂ (24)

where ��Ap and ��Bp are the numerator and denominator presented in Equation (23), respectively,
in their FD matrices form (see Appendix A for their stencils). In order to solve the linear
wave problem we can use the set of linear equations presented in (24) for computing the
vertical velocity Ŵ . Then the problem can be marched in time using the linearized form of
Equations (2) and (3).
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4. COMPARING THE ACCURACY OF THE NEW ACCURATE FD METHOD TO
THE STANDARD FD METHOD IN THE LINEAR PROBLEM

Since the linear water wave problem has an exact analytical solution and its dispersion relation
is known, a comparison to numerical dispersion relations can be delineated analytically. The
better a numerical stencil is, the better the agreement of its dispersion with the exact one.
Both numerical methods, AFD and SFD should agree with the analytical dispersion relation
only to a limited extent, even with a grid spacing that approaches zero. This arises from
the fact that the Boussinesq equations are in essence approximate. When the grid spacing
approaches zero, the numerical methods will never reach the genuine dispersion relation, but
only an approximated one, which is derived from the speci�c Boussinesq equation that has
been chosen (see Figure 1).
Note that the SFD method was used in its highest accuracy available for the same compu-

tational e�ort as the AFD method. For the AFD method, Pad�e(2; 4) and Pad�e(4; 6) indicates
that band widths of 5 and 7 grid points are used. Therefore, the SFD method taken for com-
parison used all the grid points of the band even for lower derivatives in order to achieve its
highest accuracy available for the same computational e�ort.
A Boussinesq equation using Pad�e(2; 4) gives a maximal dispersion ratio error of 2% when

dealing with waves of kh � 4 and less, where k is the wavenumber and h is the water depth.
In principle, every numerical method further degrades the accuracy with respect to the grid
spacing (d), therefore, if we accept a maximal dispersion ratio error of 2% the solution is
expected to be limited by a smaller value of kh.
As we can see in Figure 2, when the grid spacing with respect to the wave length (kd)

approaches zero the SFD method and the AFD method behave in the same way giving the
dispersion relation of the analytical Pad�e(2; 4) HOB equation (shown in Figure 1). When
kd is increased, we can see that the accuracy of the linear dispersion relation is rapidly
decreasing for the standard FD method, whereas the new accurate FD method shows much

Figure 2. The ratio between the numerical linear dispersion relation and the exact analytical
one for the new AFD method and the SFD method, while approximating the Pad�e(2; 4) HOB

equation with respect to kh and kd.
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Figure 3. The ratio between the numerical linear dispersion relation and the exact analytical one for
the new AFD method and the SFD method, while approximating the Pad�e(2; 4) HOB equation with
respect to kh for several values of grid points per wave length (N =2�=kd). - - - SFD, —– AFD.

Figure 4. The ratio between the numerical linear dispersion relation and the exact analytical
one for the AFD method and the SFD method, while approximating the Pad�e(2; 4) HOB

equation with respect to kh and d=h.

better behaviour. We can see that for 5 grid points per wave length and less (kd � 1:25
and above) the SFD method cannot be used for the above error limit but, the AFD method
enables us to solve for waves of up to kh � 3:9, which means that there is almost no further
loss of accuracy due to the AFD method, when we use a stencil of 5 or more grid points
per wave length for the Pad�e(2; 4) Boussinesq equation (Figure 3). In Figure 4 we can see
that AFD method again demonstrates much better behaviour allowing calculation for larger
kh with respect to any ratio of grid spacing to depth (d=h) under the same error limitations.
Figure 5 describes the allowed kh−kd region and kh−d=h region for maximal dispersion ratio
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Figure 5. The allowed regions in each method for maximal dispersion ratio error of 2%
while approximating the Pad�e(2; 4) HOB equation.

Figure 6. The ratio between the numerical linear dispersion relation and the exact analytical
one for the new AFD method and the SFD method, while approximating the Pad�e(4; 6) HOB

equation with respect to kh and kd.

error of 2%. As before, it is clear that the AFD method performs better than the SFD one.
Similar results for the Pad�e(4; 6) Boussinesq equation are shown in Figures 6–9. As before,
the new AFD method performs much better giving almost no decrease in accuracy for 4–5
and more grid points per wave length.
We can see that there is a signi�cant increase in the capabilities of the AFD method with

comparison to the SFD method in the linear case. Here we have regarded the bene�ts of the
method for the �rst harmonic, but in the nonlinear case except for the increase in accuracy in
the �rst harmonic there will be an increase in accuracy for higher harmonics as well. Even if
we chose to work with �ner grids for other reasons, such as calculations of breaking waves,
for higher and higher harmonics we shall have lower and lower number of grid points per
wave length resulting in a decrease in accuracy. Therefore, the AFD method bene�ts us in
the nonlinear case as well, giving higher accuracy for the �rst and higher harmonics.
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Figure 7. The ratio between the numerical linear dispersion relation and the exact analytical one for
the new AFD method and the SFD method, while approximating the Pad�e(4; 6) HOB equation with
respect to kh for several values of grid points per wave length (N =2�=kd). - - - SFD, —– AFD.

Figure 8. The ratio between the numerical linear dispersion relation and the exact analytical
one for the new AFD method and the SFD method, while approximating the Pad�e(4; 6) HOB

equation with respect to kh and d=h.

5. CONSTRUCTING AN ACCURATE FD METHOD FOR THE NONLINEAR
DIRICHLET TO NEUMANN RELATION

An important motivation for using Boussinesq equations, except for the elimination of the
vertical coordinate, is to be able to account for nonlinear e�ects. Therefore, the new accurate
method should be extended to comprise nonlinearity. In 2003, Madsen and Agnon [12] have
given a new formulation doubling the relative order of the vertical coordinates. We shall
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Figure 9. The allowed regions in each method for maximal dispersion ratio error of 2% while
approximating the Pad�e(4; 6) HOB equation.

implement the fully accurate FD operator on this new formulation and construct a DtN operator
for nonlinear waves.
As stated in Equation (1), the velocity potential satis�es the Laplace equation. Furthermore,

we can use the Laplace operator successively to replace horizontal di�erentiations by vertical
ones to obtain

∇2m�=(−1)m @
2m�
@z2m

(25)

Next we use Equation (20) to de�ne even powers of the FD operator

�2m=
(
2 sinh

(
d
2

∇
))2m

(26)

Notice that when we take the Taylor series of (26) all the powers of ∇ will be even and
could be replaced using (25) with vertical derivatives to give

�2 = d2
@2

@z2
+
d4

12
@4

@z4
+
d6

360
@6

@z6
+

d8

20160
@8

@z8
+

d10

1814400
@10

@z10
+ · · ·

�4 = d4
@4

@z4
+
d6

6
@6

@z6
+
d8

80
@8

@z8
+
17d10

30240
@10

@z10
+ · · · (27)

Again we utilize the expansion of the velocity potential as a power series in the vertical
coordinates:

�(x; y; z; t) =
N∑
n=0
(z + h)n�n(x; y; t)

W (x; y; z; t) =
N∑
n=0

n(z + h)n−1�n(x; y; t)

(28)
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which yields, for the vertical derivatives of �, the relation

@2m�
@z2m

=
∞∑
n=0

n!
(n− 2m)! (z + h)

n−2m�n(x; y; t) (29)

By applying (6) to the horizontal bottom boundary condition (4), we �nd that only even
integer numbers are acceptable values for n. For Pad�e(2; 4) Boussinesq equation we take N
to be 10, yielding six base functions (�0, �2, �4, �6, �8 and �10) to be determined. We �rst
use Equations (27)–(29)

�2�̂ =−2d2�2 + (2d4 − 12d2 �z2)�4 + (−2d6 + 30d4 �z2 − 30d2 �z4)�6
+ (2d8 − 56d6 �z2 + 140d4 �z4 − 56d2 �z6)�8
+ (−2d10 + 90d8 �z2 − 420d6 �z4 + 420d4 �z6 − 90d2 �z8)�10

�2Ŵ =−24d2 �z�4 + (60d4 �z − 120d2 �z3)�6
+ (−112d6 �z + 560d4 �z3 − 336d2 �z5)�8
+ (180d8 �z − 1680d6 �z3 + 2520d4 �z5 − 720d2 �z7)�10

to formulate

�4�̂ = 24d4�4 + (−120d6 + 360d4 �z2)�6
+ (504d8 − 3360d6 �z2 + 1680d4 �z4)�8
+ (−2040d10 + 22680d8 �z2 − 25200d6 �z4 + 5040d4 �z6)�10

�4Ŵ =720d4 �z�6 + (−6720d6 �z + 6720d4 �z3)�8
+ (45360d8 �z − 100800d6 �z3 + 30240d4 �z5)�10 (30)

where �z= z+h. Then, we solve the linear system de�ned by (30) and (28) for z=0 to obtain
the six base functions (�0, �2, �4, �6, �8 and �10) with relation to �̂, Ŵ , �2�̂, �2Ŵ , �4�̂
and �4Ŵ . Next, we substitute these six functions into (28) on z= � to formulate the relation
between �̃ to �̂, Ŵ , �2�̂, �2Ŵ , �4�̂ and �4Ŵ . We can write this relation in a compact
form as

�̃=Anl�̂ + BnlŴ (31)

Equations (31) and (24) can be written in a compact form as⎡
⎣ ��Ap − ��Bp
��Anl ��Bnl

⎤
⎦[

�̂

Ŵ

]
=

[
0

�̃

]
(32)

where ��Ap, ��Bp, ��Anl and ��Bnl are the band matrices related to Ap, Bp, Anl and Bnl, respectively
(see Appendix B). The solution of (32) gives us �̂ and Ŵ for every grid point. This enables
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us to �nd the set of six coe�cients (�0, �2, �4, �6, �8 and �10) for every grid point. By
substituting these coe�cients into (28) the vertical pro�le can be constructed for all the region
of calculation leading to the solution of the problem for the nonlinear wave, i.e. �nding the
vertical velocity on the free surface (W̃ ). Following Fuhrman and Bingham [9], in order
to make the solution of the linear system linear (32) more e�cient a rearrangement of the
equations can be performed to yield a single banded coe�cient matrix.

6. COMPLETING THE METHOD

In the previous sections a new AFD method has been constructed. This method enables us
to solve accurately and e�ciently the DtN problem for nonlinear waves, that lies in the heart
of HOB equations. The �nal step is to show how the problem is marched in time using the
free surface boundary conditions. In order to march � and �̃ in time we use (2) and (3)
with a time propagation Runge–Kutta method. The only term that is missing in this stage is
(∇�)z= �. Here we should be cautious because we cannot simply apply a FD �rst derivatives
with respect to x and y on �̃. That is because �̃ is the potential on the free surface elevation,
which means that it is located on z= �(x; y). In order to take the horizontal gradient on the
free surface, we apply it to the power series expansion of potential (28) and than substitute
z= � to receive

(∇�)z= �=
N∑
n=0
(�+ h)n∇�n(x; y; t) (33)

The base functions in (33) are already computed for every grid point and can be easily
di�erentiated horizontally by applying a FD �rst derivative operator to them. The AFD method
used in Equation (32) gives a high-order accuracy, as show in this paper. The auxiliary
computation of ∇�n, which appears in (33) is done by a regular FD approach. Thus, it has
lower accuracy for the same stencil width. In order to maintain a uniform overall accuracy
we use a double bandwidth in the calculation of ∇�n. The additional computational cost of
this operation is negligible.
Note that Equations (2) and (3) are stated in Eulerian formulation. This implies that

acquiring �̃ of the next time step should take into account that � has also changed. Ap-
plying the chain rule together with Equation (2) yields the relation

�̃t =(�t)z=� + W̃ �t =(�t)z=� + W̃ (W − ∇�∇�)z=� (34)

By using this relation (34), the dynamic boundary condition (3) takes the form

�̃t =−g�− 1
2 (∇�)2 + 1

2W̃
2 − W̃∇�(∇�)z=�; z= � (35)

which enables us to propagate �̃ to give the potential in the next time step at the appropriate
elevation.
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7. RESULTS

The previous sections have discussed the derivation of the new AFD method for solving HOB
equations. In this section, we provide numerical calculations to verify the performance of the
method for nonlinear waves.
As shown by Fenton [14], steady solutions to Stokes waves right up to the steepest wave

can be computed with great accuracy using a spectral method based on stream function theory.
Here we apply the same technique to solve the AFD Boussinesq Pad�e(2; 4) approximation and
compare to the solution of the exact equations. �̂ and Ŵ are expanded in a Fourier series as

�̂ =
n∑
j=1

Bj
jk
cos(jk x); Ŵ =

n∑
j=1
Cj cos(jkx)

�̂ =
n∑
j=1

Cj
jk
cos(jkx)

(36)

An algebraic relation between the Cj and Bj coe�cients can be found using the linear DtN
relation (16). Here, we use Pad�e(2; 4) in order to approximate this relation as shown in
Equation (23). By using (36), (23), (28) and (30) in the free surface conditions at n + 1
equally spaced grid points from wave crest to wave trough we receive 2n+2 equations. These
equations together with the kinematic constrains are then solved using Newton’s method, as
in Reference [14]. Figure 10 plots the errors in nonlinear dispersion (wave celerity, ec), the
RMS surface velocities (eu and ew) and the RMS surface pro�le with respect to kh for both
the accurate and the standard FD methods. It shows the error of the �rst three harmonics
as well (eA1 , eA2 , eA3 , eB1 , eB2 and eB3). The wave conditions chosen for calculation are of
steepness ka=0:05, 0:10 and 0:15. In all cases n=24 was used and was enough to ensure
that Bn=B16 10−9 for both the exact and approximate equations. The distance between two
grid points (d) was imposed by the choice of n to be L=24. The error metrics used are

ew =
2

W̃
e
maxL

√∫ L

0
(W̃

e − W̃ )2 dx; e�=
2
HL

√∫ L

0
(�e − �)2 dx

eu =
2

Ũ
e
maxL

√∫ L

0
(Ũ

e − Ũ )2 dx; ec=
ce − c
ce

eAi =
Aei − Ai
Aei

; eBi =
Bei − Bi
Bei

(37)

Finally, we applied the method to the problem of a third-order standing wave [15].
Figure 11(a) shows the error bars for the time evolution during 100 periods sampled at
one period intervals. Figure 11(b) shows the oscillation of �’s error metric de�ned in (37).
This error is comparable to the accuracy of the approximate analytical initial condition.

8. CONCLUSIONS

A new FD method was derived for solving Boussinesq-type equations. Previously, a Pad�e
approximation was found for the dispersion operator in terms of a rational function of the
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Figure 10. Errors in nonlinear dispersion (ec), integrated wave pro�le (e�), surface velocities (eu; ew)
and �rst three harmonics (eAi ; eBi) computed using both the SFD method and the new AFD method in

comparison to the exact equations. See (37) for de�nitions of the error metrics.
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(a) (b)

Figure 11. Numerical results for wave parameters of kh=2 and ka=0:05: (a) the error bars for
the time evolution during 100 periods sampled at one period intervals; and (b) the oscillation of

�’s error metric de�ned in (37).

horizontal gradient operator [16]. Then the numerator and denominator were each evaluated
by a �nite di�erence scheme at an order consistent with the order of the derivatives of each.
This resulted in relatively large truncation errors. For Pad�e(2; 4) and Pad�e(4; 6) approximations
this error added up to the dispersion error and degraded the accuracy of the method. The new
method combines these two steps into a single step and �nds the Pad�e expansion directly in
terms of the �nite di�erence operator, e�ectively doubling the order of the �nite di�erence
scheme. The linear dispersion relation was studied (including the numerical dispersion) and the
method was checked for steady nonlinear waves using the method of Madsen and Agnon [12],
which doubles the relative order of the velocity pro�le. For Pad�e(4,4) and Pad�e(6,6), the
truncation error and the dispersion error have opposite signs. We found a peculiar phenomenon
that holds, for speci�c values of d=h (grid-size to depth ratio), over a very wide range of
wavenumbers: at these values, the total error (the dispersion error plus truncation error) nearly
vanishes. This can be utilized to improve the methods’ accuracy by choosing that value of
d=h for grid spacing. In these cases, choosing the right d=h, the standard HOB method can
be used instead of the new method. The approaches presented here can be applied to other
problems in which Pad�e approximants or similar methods are used to approximate high-order
di�erential operators.

APPENDIX A: THE ACCURATE FD STENCILS AND THE
STANDARD ONES FOR THE LINEAR CASE

In order to construct the new accurate stencils for ��Ap and ��Bp in Equation (24) we �rst need
to derive the even powers of the FD operator �. As shown in Section 3, � is de�ned as

�f(x)=f
(
x +

d
2

)
− f

(
x − d

2

)
(A1)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:925–945



HIGH-ORDER BOUSSINESQ DIFFERENCE EQUATIONS 941

Therefore, by applying again the operator to Equation (A1) we get

�2f(x) = f(x + d)− 2f(x) + f(x − d)
�4f(x) = f(x + 2d)− 4f(x + d) + 6f(x)− 4f(x − d) + f(x − 2d)
�6f(x) = f(x + 3d)− 6f(x + 2d) + 15f(x + d)− 20f(x)

+15f(x − d)− 6f(x − 2d) + f(x − 3d)

(A2)

By substituting (A2) into the numerator and the denominator of (23) separately and collect-
ing for all neighbouring grid points, we can construct the two stencils for solving the linear
DtN relation (24) with a Pad�e(2; 4) approximation

Ap : {−15(31d6h+ 112d2h5 − 128h7)

−1920h(d6 + 7d2h4 + 4h6)

90(53d6h+ 336d2h5 + 128h7)

−1920h(d6 + 7d2h4 + 4h6)

−15(31d6h+ 112d2h5 − 128h7)} (A3)

Bp : {23d8 − 155d6h2 − 28d4h4 − 720d2h6 + 192h8

16(43d8 − 40d6h2 + 217d4h4 − 360d2h6 − 48h8)

6(393d8 + 265d6h2 + 2212d4h4 + 2160d2h6 + 192h8)

16(43d8 − 40d6h2 + 217d4h4 − 360d2h6 − 48h8)

23d8 − 155d6h2 − 28d4h4 − 720d2h6 + 192h8} (A4)

Taking the Pad�e(4,6) approximation of (23) gives a more AFD operator representing the
DtN relation:

G= {21(625680d16 + 8149680d12h4 + 6336000d10h6 + 26611200d8h8 + 2027520d4h12)

+21(154680d16 + 1811880d12h4 + 834240d10h6 + 4857600d8h8 − 2580480d6h10

+ 337920d4h12 − 245760d2h14)�2

+ 21(7069d16 + 61087d12h4 − 44080d10h6 + 53680d8h8 − 317440d6h10

− 2816d4h12 − 20480d2h14 + 4096h16)�4}

÷ {−13139280d18 − 171143280d14h4 − 133056000d12h6

− 558835200d10h8 − 42577920d6h12
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+ (−4343220d18 + 4379760d16h2 − 52311420d14h4 + 28440720d12h6 − 104227200d10h8

+ 240468480d8h10 − 10644480d6h12 + 19353600d4h14)�2

+ (−364392d18 + 1082760d16h2 − 3448536d14h4 + 12703320d12h6 + 2343264d10h8

+ 48142080d8h10 − 5999616d6h12 + 3225600d4h14 − 860160d2h16)�4

+ (−5571d18 + 49483d16h2 + 11767d14h4 + 537353d12h6 + 264712d10h8

+ 1210608d8h10 − 695808d6h12 − 26880d4h14 − 71680d2h16 + 4096h18)�6} (A5)

Now, as before, by substituting (A2) into the numerator and the denominator of (A5) two
stencils can be constructed for the AFD Pad�e(4,6) approximation.
The SFD DtN relation is acquired by applying Pad�e approximation to (16) and then ap-

proximating the di�erential operator (∇) using the FD method. The resulting relations for
Pad�e(2; 4) and Pad�e(4; 6) are:

SFD; Pad �e(2; 4) : G =
− 420d2h�2 + (35d2h+ 40h3)�4

420d4 − 180d2h2�2 + (15d2h2 + 4h4)�4

SFD; Pad �e(4; 6) : G =
41580d4h�2 + (−3465d4h− 5040d2h3)�4 + (462d4h+ 840d2h3 + 84h5)�6

− 41580d6 + 18900d4h2�2 + (−1575d4h2 − 840d2h4)�4 + (210d4h2 + 140d2h4 + 4h6)�6

(A6)

In linear theory, derivation with respect to x can be regarded as multiplication by ik. This
concept together with Equation (21) are used to form the ratios between (23), (A5), (A6)
and (16) that are shown in Figures 2–9.

APPENDIX B: THE SOLUTION FOR THE SIX BASE FUNCTIONS

In Section 5, Equations (28) and (30), a linear system relating six base functions (�0, �2, �4,
�6, �8 and �10) to �̂, Ŵ , �2�̂, �2Ŵ , �4�̂ and �4Ŵ is presented. Solving the linear system
for these base functions on z=0 yields,

Anl : {(278d12 + 128h6�2(2h+ �)2(h2 − 2h�− �2)− 511d10(2h2 − 2h�− �2)

− 56d4h4(128h4 + 256h3�+ 44h2�2 − 84h�3 − 21�4)

+8d8(996h4 − 352h3�− 44h2�2 + 132h�3 + 33�4)

+16d2h4(32h6 − 32h5�− 536h4�2 − 464h3�3 − 46h2�4 + 42h�5 + 7�6)

+d6(−9536h6 + 10816h5�+ 4168h4�2 − 992h3�3 + 62h2�4 + 186h�5 + 31�6))

�2(2h+ �)2

192d4(79d12 + 1029d8h4 + 800d6h6 + 3360d4h8 + 256h12)
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(464d12 − 16h6�2(2h+ �)2(h2 − 2h�− �2)− 280d10(2h2 − 2h�− �2)

+d8(5424h4 − 608h3�− 76h2�2 + 228h�3 + 57�4)

+7d4h4(128h4 + 256h3�+ 404h2�2 + 276h�3 + 69�4)

+4d6(172h6 + 1468h5�+ 694h4�2 − 32h3�3 + 2h2�4 + 6h�5 + �6)

+4d2h4(−64h6 + 64h5�+ 232h4�2 + 256h3�3 + 134h2�4 + 42h�5 + 7�6))

�2(2h+ �)2

6d4(79d12 + 1029d8h4 + 800d6h6 + 3360d4h8 + 256h12)

(2528d16 + 128h6�4(2h+ �)4(h2 − 2h�− �2)

+d12(32928h4 − 20168h2�2 − 20168h�3 − 5042�4)

+d10(25600h6 + 25256h4�2 − 31570h2�4 − 18942h�5 − 3157�6)

+16d2h4�2(2h+ �)2

(160h6 − 160h5�− 440h4�2 − 528h3�3 − 342h2�4 − 126h�5 − 21�6)

−d6�2(2h+ �)2

(4160h6 + 66240h5�+ 31000h4�2 − 1696h3�3 + 106h2�4 + 318h�5 + 53�6)

+8d4h4(1024h8 − 3584h6�2 − 10752h5�3 − 22736h4�4

− 27552h3�5 − 17528h2�6 − 5544h�7 − 693�8)

+8d8(13440h8 − 30256h6�2 − 26544h5�3 − 3388h4�4 − 1624h2�6 − 696h�7 − 87�8))
1

32d4(79d12 + 1029d8h4 + 800d6h6 + 3360d4h8 + 256h12)
Anl(2)

Anl(1)}
Bnl : {(140d14 + 192h8�3(2h+ �)3 + d12(−1924h2 + 534h�+ 267�2)

+5d10(1440h4 − 1342h3�− 551h2�2 + 120h�3 + 30�4)
+80d2h6�(32h5 + 208h4�+ 120h3�2 − 60h2�3 − 54h�4 − 9�5)
+4d4h4(3840h6 + 5120h5�− 4960h4�2 − 7576h3�3 − 1964h2�4 − 42h�5 − 7�6)
+d8(−43648h6 + 14048h5�+ 824h4�2 − 6016h3�3 − 1274h2�4 + 138h�5 + 23�6)
− 5d6h2(512h6 + 11072h5�+ 4896h4�2 − 392h3�3 + 212h2�4 + 186h�5 + 31�6))
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�2(2h+ �)2

2880d4(79d12h+ 1029d8h5 + 800d6h7 + 3360d4h9 + 256h13)

(−880d14 + 48h8�3(2h+ �)3 + 8d12(898h2 − 318h�− 159�2)

− 5d10(4176h4 − 2048h3�− 676h2�2 + 348h�3 + 87�4)

+40d2h6�(64h5 + 56h4�+ 96h3�2 + 114h2�3 + 54h�4 + 9�5)

+d4h4(3840h6 + 5120h5�+ 28640h4�2 + 24344h3�3

+ 3916h2�4 − 1302h�5 − 217�6)

+d8(69488h6 − 34288h5�− 13144h4�2 + 3656h3�3 + 484h2�4 − 258h�5 − 43�6)

+5d6h2(5248h6 + 14368h5�+ 4572h4�2 − 2548h3�3 − 557h2�4 + 48h�5 + 8�6))

−�2(2h+ �)2
2880d4(79d12h+ 1029d8h5 + 800d6h7 + 3360d4h9 + 256h13)

18960d16(2h+ �) + 35160d14�(2h+ �)2 + 192h8�4(2h+ �)5

+80d2h6�2(2h+ �)3(80h4 + 108h2�2 + 108h�3 + 27�4)

+d12(493920h5 + 182704h4�+ 100840h3�2 + 231580h2�3 + 123822h�4 + 20637�5)

+5d6h2�(2h+ �)2

(28160h6 + 80320h5�+ 66336h4�2 + 26600h3�3 + 7180h2�4 + 318h�5 + 53�6)

+15d10(25600h7 + 119424h6�+ 101304h5�2 + 23828h4�3

+ 6314h3�4 + 7063h2�5 + 2576h�6 + 322�7)

+d8(1612800h9 + 2185728h8�+ 2940800h7�2 + 2679840h6�3 + 1169280h5�4

+ 215824h4�5 + 27840h3�6 + 15270h2�7 + 3930h�8 + 393�9)

+4d4h4(30720h9 + 15360h8�+ 35840h7�2 + 183680h6�3

+ 304416h5�4 + 243600h4�5

+ 109200h3�6 + 30240h2�7 + 5530h�8 + 553�9)
�

480d4(79d12h+ 1029d8h5 + 800d6h7 + 3360d4h9 + 256h13)

Bnl(2)

Bnl(1)}
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Here, Anl(1), Anl(2), Bnl(1) and Bnl(2) represent the �rst and second terms in the numerical
stencils for A and B, respectively. This results from the symmetry of these two stencils.
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